Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666799 | Advances in Mathematics | 2011 | 43 Pages |
Abstract
In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces and Triebel–Lizorkin spaces for all s∈(0,1) and p,q∈(n/(n+s),∞], both in Rn and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve on Rn for all s∈(0,1) and q∈(n/(n+s),∞]. A metric measure space version of the above morphism property is also established.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)