Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666812 | Advances in Mathematics | 2010 | 22 Pages |
Abstract
Let G be a connected graph. We reformulate Stark and Terras' Galois Theory for a quotient H of a regular covering K of a graph G by using voltage assignments. As applications, we show that the weighted Bartholdi L-function of H associated to the representation of the covering transformation group of H is equal to that of G associated to its induced representation in the covering transformation group of K. Furthermore, we express the weighted Bartholdi zeta function of H as a product of weighted Bartholdi L-functions of G associated to irreducible representations of the covering transformation group of K. We generalize Stark and Terras' Galois Theory to digraphs, and apply to weighted Bartholdi L-functions of digraphs.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)