Article ID Journal Published Year Pages File Type
4666812 Advances in Mathematics 2010 22 Pages PDF
Abstract

Let G be a connected graph. We reformulate Stark and Terras' Galois Theory for a quotient H of a regular covering K of a graph G by using voltage assignments. As applications, we show that the weighted Bartholdi L-function of H associated to the representation of the covering transformation group of H is equal to that of G associated to its induced representation in the covering transformation group of K. Furthermore, we express the weighted Bartholdi zeta function of H as a product of weighted Bartholdi L-functions of G associated to irreducible representations of the covering transformation group of K. We generalize Stark and Terras' Galois Theory to digraphs, and apply to weighted Bartholdi L-functions of digraphs.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)