Article ID Journal Published Year Pages File Type
4666818 Advances in Mathematics 2010 21 Pages PDF
Abstract

We construct a functor F:Graphs→Groups which is faithful and “almost” full, in the sense that every nontrivial group homomorphism FX→FY is a composition of an inner automorphism of FY and a homomorphism of the form Ff, for a unique map of graphs f:X→Y. When F is composed with the Eilenberg–Mac Lane space construction K(FX,1) we obtain an embedding of the category of graphs into the unpointed homotopy category which is full up to null-homotopic maps.We provide several applications of this construction to localizations (i.e. idempotent functors); we show that the questions:(1)Is every orthogonality class reflective?(2)Is every orthogonality class a small-orthogonality class? have the same answers in the category of groups as in the category of graphs. In other words they depend on set theory: (1) is equivalent to weak Vopěnka's principle and (2) to Vopěnka's principle. Additionally, the second question, considered in the homotopy category, is also equivalent to Vopěnka's principle.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)