Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666841 | Advances in Mathematics | 2011 | 26 Pages |
Abstract
For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt–Caffarelli–Friedman and Caffarelli–Jerison–Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of these results for the Laplace–Beltrami operator on Riemannian manifolds. As an application we show that our monotonicity theorems can be employed to prove the Lipschitz continuity for the solutions of a general class of two-phase free boundary problems on Riemannian manifolds.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)