Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666849 | Advances in Mathematics | 2011 | 25 Pages |
The cluster-tilted algebras have been introduced by Buan, Marsh and Reiten, they are the endomorphism rings of cluster-tilting objects T in cluster categories; we call such an algebra cluster-concealed in case T is obtained from a preprojective tilting module. For example, all representation-finite cluster-tilted algebras are cluster-concealed. If C is a representation-finite cluster-tilted algebra, then the indecomposable C-modules are shown to be determined by their dimension vectors. For a general cluster-tilted algebra C, we are going to describe the dimension vectors of the indecomposable C-modules in terms of the root system of a quadratic form. The roots may have both positive and negative coordinates and we have to take absolute values.