Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666898 | Advances in Mathematics | 2010 | 38 Pages |
Abstract
Let W be an associative PI-algebra over a field F of characteristic zero, graded by a finite group G. Let idG(W) denote the T-ideal of G-graded identities of W. We prove: 1. [G-graded PI-equivalence] There exists a field extension K of F and a finite-dimensional Z/2Z×G-graded algebra A over K such that idG(W)=idG(A∗) where A∗ is the Grassmann envelope of A. 2. [G-graded Specht problem] The T-ideal idG(W) is finitely generated as a T-ideal. 3. [G-graded PI-equivalence for affine algebras] Let W be a G-graded affine algebra over F. Then there exists a field extension K of F and a finite-dimensional algebra A over K such that idG(W)=idG(A).
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)