Article ID Journal Published Year Pages File Type
4666913 Advances in Mathematics 2010 12 Pages PDF
Abstract

We prove the joints conjecture, showing that for any N lines in R3, there are at most points at which 3 lines intersect non-coplanarly. We also prove a conjecture of Bourgain showing that given N2 lines in R3 so that no N lines lie in the same plane and so that each line intersects a set P of points in at least N points then the cardinality of the set of points is Ω(N3). Both our proofs are adaptations of Dvir's argument for the finite field Kakeya problem.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)