Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666915 | Advances in Mathematics | 2010 | 37 Pages |
We use correspondences to define a purely topological equivariant bivariant K-theory for spaces with a proper groupoid action. Our notion of correspondence differs slightly from that of Connes and Skandalis. Our construction uses no special features of equivariant K-theory. To highlight this, we construct bivariant extensions for arbitrary equivariant multiplicative cohomology theories.We formulate necessary and sufficient conditions for certain duality isomorphisms in the topological bivariant K-theory and verify these conditions in some cases, including smooth manifolds with a smooth cocompact action of a Lie group. One of these duality isomorphisms reduces bivariant K-theory to K-theory with support conditions. Since similar duality isomorphisms exist in Kasparov theory, the topological and analytic bivariant K-theories agree if there is such a duality isomorphism.