Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666954 | Advances in Mathematics | 2010 | 15 Pages |
Abstract
We consider the action of a real reductive group G on a Kähler manifold Z which is the restriction of a holomorphic action of a complex reductive group H. We assume that the action of a maximal compact subgroup U of H is Hamiltonian and that G is compatible with a Cartan decomposition of H. We have an associated gradient map μp:Z→p where g=k⊕p is the Cartan decomposition of g. For a G-stable subset Y of Z we consider convexity properties of the intersection of μp(Y) with a closed Weyl chamber in a maximal abelian subspace a of p. Our main result is a Convexity Theorem for real semi-algebraic subsets Y of Z=P(V) where V is a unitary representation of U.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)