Article ID Journal Published Year Pages File Type
4666961 Advances in Mathematics 2010 46 Pages PDF
Abstract

We construct fiber-preserving anti-symplectic involutions for a large class of symplectic manifolds with Lagrangian torus fibrations. In particular, we treat the K3 surface and the six-dimensional examples constructed by Castaño-Bernard and Matessi (2009) [8], which include a six-dimensional symplectic manifold homeomorphic to the quintic threefold. We interpret our results as corroboration of the view that in homological mirror symmetry, an anti-symplectic involution is the mirror of duality. In the same setting, we construct fiber-preserving symplectomorphisms that can be interpreted as the mirror to twisting by a holomorphic line bundle.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)