Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666961 | Advances in Mathematics | 2010 | 46 Pages |
Abstract
We construct fiber-preserving anti-symplectic involutions for a large class of symplectic manifolds with Lagrangian torus fibrations. In particular, we treat the K3 surface and the six-dimensional examples constructed by Castaño-Bernard and Matessi (2009) [8], which include a six-dimensional symplectic manifold homeomorphic to the quintic threefold. We interpret our results as corroboration of the view that in homological mirror symmetry, an anti-symplectic involution is the mirror of duality. In the same setting, we construct fiber-preserving symplectomorphisms that can be interpreted as the mirror to twisting by a holomorphic line bundle.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)