Article ID Journal Published Year Pages File Type
4666985 Advances in Mathematics 2010 33 Pages PDF
Abstract

We study the intermediate extension of the character sheaves on an adjoint group to the semi-stable locus of its wonderful compactification. We show that the intermediate extension can be described by a direct image construction. As a consequence, we show that the “ordinary” restriction of a character sheaf on the compactification to a “semi-stable stratum” is a shift of semisimple perverse sheaf and is closely related to Lusztig's restriction functor (from a character sheaf on a reductive group to a direct sum of character sheaves on a Levi subgroup). We also provide a (conjectural) formula for the boundary values inside the semi-stable locus of an irreducible character of a finite group of Lie type, which gives a partial answer to a question of Springer (2006) [21], . This formula holds for Steinberg character and characters coming from generic character sheaves. In the end, we verify Lusztig's conjecture Lusztig (2004) [16, 12.6] inside the semi-stable locus of the wonderful compactification.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)