Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667015 | Advances in Mathematics | 2010 | 38 Pages |
Abstract
We study functors underlying derived Hochschild cohomology, also called Shukla cohomology, of a commutative algebra S essentially of finite type and of finite flat dimension over a commutative noetherian ring K. We construct a complex of S-modules D, and natural reduction isomorphisms for all complexes of S-modules N and all complexes M of finite flat dimension over K whose homology H(M) is finitely generated over S; such isomorphisms determine D up to derived isomorphism. Using Grothendieck duality theory we establish analogous isomorphisms for any essentially finite-type flat map of noetherian schemes, with f!OY in place of D.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)