Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667058 | Advances in Mathematics | 2010 | 31 Pages |
Abstract
Given an action of a complex reductive Lie group G on a normal variety X, we show that every analytically Zariski-open subset of X admitting an analytic Hilbert quotient with projective quotient space is given as the set of semistable points with respect to some G-linearised Weil divisor on X. Applying this result to Hamiltonian actions on algebraic varieties, we prove that semistability with respect to a momentum map is equivalent to GIT-semistability in the sense of Mumford and Hausen. It follows that the number of compact momentum map quotients of a given algebraic Hamiltonian G-variety is finite. As further corollary we derive a projectivity criterion for varieties with compact Kähler quotient.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)