Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667125 | Advances in Mathematics | 2009 | 24 Pages |
Abstract
Kostant's theory of conformally invariant differential operators on certain homogeneous spaces is generalized to cover conformally invariant systems of endomorphism-valued differential operators. In particular, the connection discovered by Kostant between conformally invariant operators and highest weight vectors in generalized Verma modules is extended.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)