Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667133 | Advances in Mathematics | 2009 | 63 Pages |
Abstract
Let k be a field of characteristic p>0. Call a finite group G a poco group over k if any finitely generated cohomological Mackey functor for G over k has polynomial growth. The main result of this paper is that G is a poco group over k if and only if the Sylow p-subgroups of G are cyclic, when p>2, or have sectional rank at most 2, when p=2.A major step in the proof is the case where G is an elementary abelian p-group. In particular, when p=2, all the extension groups between simple functors can be determined completely, using a presentation of the graded algebra of self extensions of the simple functor , by explicit generators and relations.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)