Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667195 | Advances in Mathematics | 2009 | 71 Pages |
Abstract
We study non-abelian differentiable gerbes over stacks using the theory of Lie groupoids. More precisely, we develop the theory of connections on Lie groupoid G-extensions, which we call “connections on gerbes”, and study the induced connections on various associated bundles. We also prove analogues of the Bianchi identities. In particular, we develop a cohomology theory which measures the existence of connections and curvings for G-gerbes over stacks. We also introduce G-central extensions of groupoids, generalizing the standard groupoid S1-central extensions. As an example, we apply our theory to study the differential geometry of G-gerbes over a manifold.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)