Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667224 | Advances in Mathematics | 2009 | 26 Pages |
We prove that every place P of an algebraic function field F|K of arbitrary characteristic admits local uniformization in a finite extension F of F. We show that F|F can be chosen to be Galois, after a finite purely inseparable extension of the ground field K. Instead of being Galois, the extension can also be chosen such that the induced extension FP|FP of the residue fields is purely inseparable and the value group of F only gets divided by the residue characteristic. If F lies in the completion of an Abhyankar place, then no extension of F is needed. Our proofs are based solely on valuation theoretical theorems, which are of particular importance in positive characteristic. They are also applicable when working over a subring R⊂K and yield similar results if R is regular and of dimension smaller than 3.