Article ID Journal Published Year Pages File Type
4667264 Advances in Mathematics 2009 26 Pages PDF
Abstract

The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel's conjecture for the maximum value of the Euler characteristic of a 2k-dimensional simplicial manifold on n vertices as well as Kalai's conjecture providing a lower bound on the number of edges of a simplicial manifold in terms of its dimension, number of vertices, and the first Betti number.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)