Article ID Journal Published Year Pages File Type
4667284 Advances in Mathematics 2009 63 Pages PDF
Abstract

In this paper, we study free pluriharmonic functions on noncommutative balls [Bn(H)]γ[B(H)n]γ, γ>0γ>0, and their boundary behavior. These functions have the formf(X1,…,Xn)=∑k=1∞∑|α|=kbαXα∗+a0I+∑k=1∞∑|α|=kaαXα,aα,bα∈C, where the convergence of the series is in the operator norm topology for any (X1,…,Xn)∈[Bn(H)]γ(X1,…,Xn)∈[B(H)n]γ, and B(H)B(H) denotes the algebra of all bounded linear operators on a Hilbert space HH. The main tools used in this study are certain noncommutative transforms which are introduced in the present paper and which generalize the classical transforms of Berezin, Poisson, Fantappiè, Herglotz, and Cayley. Several classical results from complex analysis have free analogues in our noncommutative multivariable setting.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,