Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667298 | Advances in Mathematics | 2009 | 32 Pages |
Abstract
We introduce discrete time Markov chains that preserve uniform measures on boxed plane partitions. Elementary Markov steps change the size of the box from a×b×c to (a−1)×(b+1)×c or (a+1)×(b−1)×c. Algorithmic realization of each step involves O((a+b)c) operations. One application is an efficient perfect random sampling algorithm for uniformly distributed boxed plane partitions.Trajectories of our Markov chains can be viewed as random point configurations in the three-dimensional lattice. We compute the bulk limits of the correlation functions of the resulting random point process on suitable two-dimensional sections. The limiting correlation functions define a two-dimensional determinantal point processes with certain Gibbs properties.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)