Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667316 | Advances in Mathematics | 2009 | 29 Pages |
Let g be a finite-dimensional simple Lie algebra and let Sg be the locally finite part of the algebra of invariants (EndCV⊗Sg(g)) where V is the direct sum of all simple finite-dimensional modules for g and S(g) is the symmetric algebra of g. Given an integral weight ξ, let Ψ=Ψ(ξ) be the subset of roots which have maximal scalar product with ξ. Given a dominant integral weight λ and ξ such that Ψ is a subset of the positive roots we construct a finite-dimensional subalgebra of Sg and prove that the algebra is Koszul of global dimension at most the cardinality of Ψ. Using this we construct naturally an infinite-dimensional non-commutative Koszul algebra of global dimension equal to the cardinality of Ψ. The results and the methods are motivated by the study of the category of finite-dimensional representations of the affine and quantum affine algebras.