Article ID Journal Published Year Pages File Type
4667339 Advances in Mathematics 2010 11 Pages PDF
Abstract

We prove topological transitivity for the Weil–Petersson geodesic flow for real two-dimensional moduli spaces of hyperbolic structures. Our proof follows a new approach that combines the density of singular unit tangent vectors, the geometry of cusps and convexity properties of negative curvature. We also show that the Weil–Petersson geodesic flow has: horseshoes, invariant sets with positive topological entropy, and that there are infinitely many hyperbolic closed geodesics, whose number grows exponentially in length. Furthermore, we note that the volume entropy is infinite.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)