Article ID Journal Published Year Pages File Type
4667373 Advances in Mathematics 2009 60 Pages PDF
Abstract

We solve Gromov's dimension comparison problem for Hausdorff and box counting dimension on Carnot groups equipped with a Carnot–Carathéodory metric and an adapted Euclidean metric. The proofs use sharp covering theorems relating optimal mutual coverings of Euclidean and Carnot–Carathéodory balls, and elements of sub-Riemannian fractal geometry associated to horizontal self-similar iterated function systems on Carnot groups. Inspired by Falconer's work on almost sure dimensions of Euclidean self-affine fractals we show that Carnot–Carathéodory self-similar fractals are almost surely horizontal. As a consequence we obtain explicit dimension formulae for invariant sets of Euclidean iterated function systems of polynomial type. Jet space Carnot groups provide a rich source of examples.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)