| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 4667461 | Advances in Mathematics | 2008 | 22 Pages | 
Abstract
												We show that for any metric space X the condition∫X∫X∫Xc(z1,z2,z3)2dH1z1dH1z2dH1z3<∞, where c(z1,z2,z3)c(z1,z2,z3) is the Menger curvature of the triple (z1,z2,z3)(z1,z2,z3) and H1H1 is the 1-dimensional Hausdorff measure on X, guarantees that X is rectifiable.
Keywords
												
											Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Mathematics (General)
												
											Authors
												Immo Hahlomaa, 
											