Article ID Journal Published Year Pages File Type
4667484 Advances in Mathematics 2008 41 Pages PDF
Abstract

Let G be an affine algebraic group acting on an affine variety X. We present an algorithm for computing generators of the invariant ring KG[X] in the case where G is reductive. Furthermore, we address the case where G is connected and unipotent, so the invariant ring need not be finitely generated. For this case, we develop an algorithm which computes KG[X] in terms of a so-called colon-operation. From this, generators of KG[X] can be obtained in finite time if it is finitely generated. Under the additional hypothesis that K[X] is factorial, we present an algorithm that finds a quasi-affine variety whose coordinate ring is KG[X]. Along the way, we develop some techniques for dealing with nonfinitely generated algebras. In particular, we introduce the finite generation ideal.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)