Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667502 | Advances in Mathematics | 2010 | 49 Pages |
In this paper we obtain the asymptotic behavior of solutions of the Klein–Gordon equation on Lorentzian manifolds (X○,g) which are de Sitter-like at infinity. Such manifolds are Lorentzian analogues of the so-called Riemannian conformally compact (or asymptotically hyperbolic) spaces. Under global assumptions on the (null)bicharacteristic flow, namely that the boundary of the compactification X is a union of two disjoint manifolds, Y±, and each bicharacteristic converges to one of these two manifolds as the parameter along the bicharacteristic goes to +∞, and to the other manifold as the parameter goes to −∞, we also define the scattering operator, and show that it is a Fourier integral operator associated to the bicharacteristic flow from Y+ to Y−.