Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667503 | Advances in Mathematics | 2010 | 22 Pages |
Abstract
We illustrate a new way to study the stability problem in celestial mechanics. In this paper, using the variational nature of elliptic Lagrangian solutions in the planar three-body problem, we study the relation between Morse index and its stability via Maslov-type index theory of periodic solutions of Hamiltonian system. For elliptic Lagrangian solutions we get an estimate of the algebraic multiplicity of unit eigenvalues of its monodromy matrix in terms of the Morse index, which is the key to understand the stability problem. As a special case, we provide a criterion to spectral stability of relative equilibrium.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)