Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667506 | Advances in Mathematics | 2010 | 22 Pages |
In this paper we investigate the existence of a solution to the Poisson equation on complete manifolds with positive spectrum and Ricci curvature bounded from below. We show that if a function f has decay f=O(r−1−ε) for some ε>0, where r is the distance function to a fixed point, then the Poisson equation Δu=f has a solution u with at most exponential growth.We apply this result on the Poisson equation to study the existence of harmonic maps between complete manifolds and also existence of Hermitian–Einstein metrics on holomorphic vector bundles over complete manifolds, thus extending some results of Li–Tam and Ni.Assuming moreover that the manifold is simply connected and of Ricci curvature between two negative constants, we can prove that in fact the Poisson equation has a bounded solution and we apply this result to the Ricci flow on complete surfaces.