Article ID Journal Published Year Pages File Type
4667564 Advances in Mathematics 2008 33 Pages PDF
Abstract

We study the regularity of the Green currents and of the equilibrium measure associated to a horizontal-like map in Ck, under a natural assumption on the dynamical degrees. We estimate the speed of convergence towards the Green currents, the decay of correlations for the equilibrium measure and the Lyapounov exponents. We show in particular that the equilibrium measure is hyperbolic. We also show that the Green currents are the unique invariant vertical and horizontal positive closed currents. The results apply, in particular, to Hénon-like maps, to regular polynomial automorphisms of Ck and to their small perturbations.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)