Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667576 | Advances in Mathematics | 2007 | 29 Pages |
Abstract
We formulate and prove a new variant of the Segal conjecture describing the group of homotopy classes of stable maps from the p-completed classifying space of a finite group G to the classifying space of a compact Lie group K as the p-adic completion of the Grothendieck group Ap(G,K) of finite principal (G,K)-bundles whose isotropy groups are p-groups. Collecting the result for different primes p, we get a new and simple description of the group of homotopy classes of stable maps between (uncompleted) classifying spaces of groups. This description allows us to determine the kernel of the map from the Grothendieck group A(G,K) of finite principal (G,K)-bundles to the group of homotopy classes of stable maps from BG to BK.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)