Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667595 | Advances in Mathematics | 2009 | 18 Pages |
Counterexamples are constructed to show that when the second fundamental form of the boundary is bounded below by a negative constant, any curvature lower bound is not enough to imply the log-Sobolev inequality. This indicates that in the study of functional inequalities on non-convex manifolds, the concavity of the boundary cannot be compensated by the positivity of the curvature. Next, when the boundary is merely concave on a bounded domain, a criterion on the log-Sobolev inequality known for convex manifolds is proved. Finally, when the concave part of the boundary is unbounded, a Sobolev inequality for a weighted volume measure is established, which implies an explicit sufficient condition for the log-Sobolev inequality to hold on non-convex manifolds.