Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4667655 | Advances in Mathematics | 2007 | 29 Pages |
Abstract
In dimensions d⩾4d⩾4, we prove that the Schrödinger map initial-value problem{∂ts=s×ΔsonRd×R;s(0)=s0 admits a unique solution s:Rd×R→S2↪R3, s∈C(R:HQ∞), provided that s0∈HQ∞ and ‖s0−Q‖H˙d/2≪1, where Q∈S2Q∈S2.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
I. Bejenaru, A.D. Ionescu, C.E. Kenig,