| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4667666 | Advances in Mathematics | 2008 | 81 Pages |
Abstract
We develop a theory of affine flag varieties and of their Schubert varieties for reductive groups over a Laurent power series local field k((t)) with k a perfect field. This can be viewed as a generalization of the theory of affine flag varieties for loop groups to a “twisted case”; a consequence of our results is that our construction also includes the flag varieties for Kac–Moody Lie algebras of affine type. We also give a coherence conjecture on the dimensions of the spaces of global sections of the natural ample line bundles on the partial flag varieties attached to a fixed group over k((t)) and some applications to local models of Shimura varieties.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
