Article ID Journal Published Year Pages File Type
4667725 Advances in Mathematics 2007 25 Pages PDF
Abstract

In this paper we prove a compactness result for compact Kähler Ricci gradient shrinking solitons. If (Mi,gi) is a sequence of Kähler Ricci solitons of real dimension n⩾4, whose curvatures have uniformly bounded Ln/2 norms, whose Ricci curvatures are uniformly bounded from below and μ(gi,1/2)⩾A (where μ is Perelman's functional), there is a subsequence (Mi,gi) converging to a compact orbifold (M∞,g∞) with finitely many isolated singularities, where g∞ is a Kähler Ricci soliton metric in an orbifold sense (satisfies a soliton equation away from singular points and smoothly extends in some gauge to a metric satisfying Kähler Ricci soliton equation in a lifting around singular points).

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)