Article ID Journal Published Year Pages File Type
4667734 Advances in Mathematics 2008 20 Pages PDF
Abstract

In 1950, C.A. Rogers introduced and studied two simultaneous packing and covering constants for a convex body and obtained the first general upper bound. Afterwards, these constants have attracted the interests of many authors because, besides their own geometric significance, they are closely related to the packing densities and the covering densities of the convex body, especially to the Minkowski–Hlawka theorem. However, so far our knowledge about them is still very limited. In this paper we will determine the optimal upper bound of the simultaneous packing and covering constants for two-dimensional centrally symmetric convex domains, and characterize the domains attaining this upper bound.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)