Article ID Journal Published Year Pages File Type
4667807 Advances in Mathematics 2007 39 Pages PDF
Abstract

Using the concept of a twisted trace density on a cyclic groupoid, a trace is constructed on a formal deformation quantization of a symplectic orbifold. An algebraic index theorem for orbifolds follows as a consequence of a local Riemann–Roch theorem for such densities. In the case of a reduced orbifold, this proves a conjecture by Fedosov, Schulze, and Tarkhanov. Finally, it is shown how the Kawasaki index theorem for elliptic operators on orbifolds follows from this algebraic index theorem.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)