Article ID Journal Published Year Pages File Type
4667813 Advances in Mathematics 2007 52 Pages PDF
Abstract

We develop intrinsic tools for computing the periodic Hopf cyclic cohomology of Hopf algebras related to transverse symmetry in codimension 1. Besides the Hopf algebra found by Connes and the first author in their work on the local index formula for transversely hypoelliptic operators on foliations, this family includes its ‘Schwarzian’ quotient, on which the Rankin–Cohen universal deformation formula is based, the extended Connes–Kreimer Hopf algebra related to renormalization of divergences in QFT, as well as a series of cyclic coverings of these Hopf algebras, motivated by the treatment of transverse symmetry for non-orientable foliations.The method for calculating their Hopf cyclic cohomology is based on two computational devices, which work in tandem and complement each other: one is a spectral sequence for bicrossed product Hopf algebras and the other a Cartan-type homotopy formula in Hopf cyclic cohomology.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)