Article ID Journal Published Year Pages File Type
4668001 Advances in Mathematics 2006 16 Pages PDF
Abstract

We prove the existence of optimal transport maps for the Monge problem when the cost is a Finsler distance on a compact manifold. Our point of view consists in considering the distance as a Mañé potential, and to rely on recent developments in the theory of viscosity solutions of the Hamilton–Jacobi equation.

RésuméOn montre l'existence d'une application de transport optimale pour le problème de Monge lorsque le cout est une distance Finslerienne sur une variété compacte. Le nouveau point de vue consiste à considérer la distance comme un potentiel de Mañé, et à exploiter des développements récents sur les solutions de viscostité de l'équation de Hamilton–Jacobi.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)