Article ID Journal Published Year Pages File Type
4668087 Advances in Mathematics 2007 37 Pages PDF
Abstract

This is the first in a series of articles devoted to deformation quantization of gerbes. We introduce basic definitions, interpret deformations of a given stack as Maurer–Cartan elements of a differential graded Lie algebra (DGLA), and classify deformations of a given gerbe in terms of Maurer–Cartan elements of the DGLA of Hochschild cochains twisted by the cohomology class of the gerbe. We also classify all deformations of a given gerbe on a symplectic manifold, as well as provide a deformation-theoretic interpretation of the first Rozansky–Witten class.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)