Article ID Journal Published Year Pages File Type
4668089 Advances in Mathematics 2007 35 Pages PDF
Abstract

In this paper we complete the study of the regularity of the free boundary in two-phase problems for linear elliptic operators started in [M.C. Cerutti, F. Ferrari, S. Salsa, Two-phase problems for linear elliptic operators with variable coefficients: Lipschitz free boundaries are C1,γ, Arch. Ration. Mech. Anal. 171 (2004) 329–348]. In particular we prove that Lipschitz and flat free boundaries (in a suitable sense) are smooth. As byproduct, we prove that Lipschitz free boundaries are smooth in the case of quasilinear operators of the form div(A(x,u)∇u) with Lipschitz coefficients.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)