Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4668096 | Advances in Mathematics | 2007 | 25 Pages |
Abstract
Suppose that an algebraic torus G acts algebraically on a projective manifold X with generically trivial stabilizers. Then the Zariski closure of the set of pairs {(x,y)∈X×X|y=gx for some g∈G} defines a nonzero equivariant cohomology class . We give an analogue of this construction in the case where X is a compact symplectic manifold endowed with a Hamiltonian action of a torus, whose complexification plays the role of G. We also prove that the Kirwan map sends the class [ΔG] to the class of the diagonal in each symplectic quotient. This allows to define a canonical right inverse of the Kirwan map.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)