Article ID Journal Published Year Pages File Type
4668096 Advances in Mathematics 2007 25 Pages PDF
Abstract

Suppose that an algebraic torus G acts algebraically on a projective manifold X with generically trivial stabilizers. Then the Zariski closure of the set of pairs {(x,y)∈X×X|y=gx for some g∈G} defines a nonzero equivariant cohomology class . We give an analogue of this construction in the case where X is a compact symplectic manifold endowed with a Hamiltonian action of a torus, whose complexification plays the role of G. We also prove that the Kirwan map sends the class [ΔG] to the class of the diagonal in each symplectic quotient. This allows to define a canonical right inverse of the Kirwan map.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)