Article ID Journal Published Year Pages File Type
4668107 Advances in Mathematics 2008 26 Pages PDF
Abstract

In this work we study the chaotic and periodic asymptotics for the confluent basic hypergeometric series. For a fixed q∈(0,1), the asymptotics for Euler's q-exponential, q-Gamma function Γq(x), q-Airy function of K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Ramanujan function (q-Airy function), Jackson's q-Bessel function of second kind, Ismail–Masson orthogonal polynomials (q−1-Hermite polynomials), Stieltjes–Wigert polynomials, q-Laguerre polynomials could be derived as special cases.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)