Article ID Journal Published Year Pages File Type
4668169 Advances in Mathematics 2008 26 Pages PDF
Abstract

Let A be an algebra over a field F of characteristic zero and let cn(A), , be its sequence of codimensions. We prove that if cn(A) is exponentially bounded, its exponential growth can be any real number >1. This is achieved by constructing, for any real number α>1, an F-algebra Aα such that exists and equals α. The methods are based on the representation theory of the symmetric group and on properties of infinite Sturmian and periodic words.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)