Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4668189 | Advances in Mathematics | 2008 | 38 Pages |
Abstract
We introduce Hochschild (co-)homology of morphisms of schemes or analytic spaces and study its fundamental properties. In analogy with the cotangent complex we introduce the so-called (derived) Hochschild complex of a morphism; the Hochschild cohomology and homology groups are then the Ext and Tor groups of that complex. We prove that these objects are well defined, extend the known cases, and have the expected functorial and homological properties such as graded commutativity of Hochschild cohomology and existence of the characteristic homomorphism from Hochschild cohomology to the (graded) centre of the derived category.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)