Article ID Journal Published Year Pages File Type
4668207 Advances in Mathematics 2006 63 Pages PDF
Abstract

We present an extrapolation theory that allows us to obtain, from weighted Lp inequalities on pairs of functions for p fixed and all A∞ weights, estimates for the same pairs on very general rearrangement invariant quasi-Banach function spaces with A∞ weights and also modular inequalities with A∞ weights. Vector-valued inequalities are obtained automatically, without the need of a Banach-valued theory. This provides a method to prove very fine estimates for a variety of operators which include singular and fractional integrals and their commutators. In particular, we obtain weighted, and vector-valued, extensions of the classical theorems of Boyd and Lorentz–Shimogaki. The key is to develop appropriate versions of Rubio de Francia's algorithm.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)