Article ID Journal Published Year Pages File Type
4668219 Advances in Mathematics 2006 28 Pages PDF
Abstract

We obtain defining equations of modular curves X0(N), X1(N), and X(N) by explicitly constructing modular functions using generalized Dedekind eta functions. As applications, we describe a method of obtaining a basis for the space of cusp forms of weight 2 on a congruence subgroup. We also use our model of X0(37) to find explicit modular parameterization of rational elliptic curves of conductor 37.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)