Article ID Journal Published Year Pages File Type
4668283 Advances in Mathematics 2006 69 Pages PDF
Abstract

One of the algebraic structures that has emerged recently in the study of the operator product expansions of chiral fields in conformal field theory is that of a Lie conformal algebra. A Lie pseudoalgebra is a generalization of the notion of a Lie conformal algebra for which C[∂] is replaced by the universal enveloping algebra H of a finite-dimensional Lie algebra. The finite (i.e., finitely generated over H) simple Lie pseudoalgebras were classified in our previous work [B.Bakalov, A.D’Andrea, V.G. Kac, Theory of finite pseudoalgebras, Adv. Math. 162 (2001) 1–140]. In a series of papers, starting with the present one, we classify all irreducible finite modules over finite simple Lie pseudoalgebras.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)