Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4668309 | Advances in Mathematics | 2006 | 66 Pages |
Abstract
We generalise the local index formula of Connes and Moscovici to the case of spectral triples for a *-subalgebra A of a general semifinite von Neumann algebra. In this setting it gives a formula for spectral flow along a path joining an unbounded self-adjoint Breuer–Fredholm operator, affiliated to the von Neumann algebra, to a unitarily equivalent operator. Our proof is novel even in the setting of the original theorem and relies on the introduction of a function valued cocycle which is ‘almost’ a (b,B)-cocycle in the cyclic cohomology of A.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)