Article ID Journal Published Year Pages File Type
4668309 Advances in Mathematics 2006 66 Pages PDF
Abstract

We generalise the local index formula of Connes and Moscovici to the case of spectral triples for a *-subalgebra A of a general semifinite von Neumann algebra. In this setting it gives a formula for spectral flow along a path joining an unbounded self-adjoint Breuer–Fredholm operator, affiliated to the von Neumann algebra, to a unitarily equivalent operator. Our proof is novel even in the setting of the original theorem and relies on the introduction of a function valued cocycle which is ‘almost’ a (b,B)-cocycle in the cyclic cohomology of A.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)