Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4668324 | Advances in Mathematics | 2007 | 36 Pages |
Abstract
Let G be a simple simply connected affine algebraic group over an algebraically closed field k of characteristic p for an odd prime p. Let B be a Borel subgroup of G and U be its unipotent radical. In this paper, we determine the second cohomology groups of B and its Frobenius kernels for all simple B-modules. We also consider the standard induced modules obtained by inducing a simple B-module to G and compute all second cohomology groups of the Frobenius kernels of G for these induced modules. Also included is a calculation of the second ordinary Lie algebra cohomology group of Lie(U) with coefficients in k.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)