Article ID Journal Published Year Pages File Type
4668387 Advances in Mathematics 2006 29 Pages PDF
Abstract

We introduce a family of algebras which are multiplicative analogues of preprojective algebras, and their deformations, as introduced by M.P. Holland and the first author. We show that these algebras provide a natural setting for the ‘middle convolution’ operation introduced by N.M. Katz in his book ‘Rigid local systems’, and put in an algebraic setting by M. Dettweiler and S. Reiter, and H. Völklein. We prove a homological formula relating the dimensions of Hom and Ext spaces, study varieties of representations of multiplicative preprojective algebras, and use these results to study simple representations. We apply this work to the Deligne–Simpson problem, obtaining a sufficient (and conjecturally necessary) condition for the existence of an irreducible solution to the equation A1A2…Ak=1 with the Ai in prescribed conjugacy classes in GLn(C).

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)